
HIT300 Hall-Substituting Current Transducer

HIT300 has a high gain and measurement accuracy in the full bandwidth range, due to the application of the multi-point zero-flux technology system and high-frequency ripple sensing channel on top of currently existing DC sensor technology.

The multi-point zero-flux technology system secures the high accuracy by utilizing the technology combination of exciting magnetic flux closed-loop control, self-excited magnetic flux gate and multi-closedloop control that realizes the closed-loop control between excitation magnetic flux and AC/DC magnetic flux generated by primary current, while the high-frequency ripple sensing channel allows the sensor to have the high performance over the full bandwidth range.

Product photo

Tel: +86(0)755-8259 3440

Website: www.hangzhicn.com

Key Technologies

- ♦ Excitation closed-loop control technology
- Self-excitation demagnetization technology
- ♦ Multi-point zero-flux technology
- ♦ Temperature control compensation technology
- Multi-range automatic switching technology

Features

- Insulated measurement between primary and secondary side
- Excellent linearity and accuracy
- ♦ Extremely low temperature drift
- ♦ Extremely low zero drift
- Broad bandwidth and short response time
- ♦ Strong anti-electromagnetic interference

Application Domain

- ♦ Medical Equipment: Scanner, MRI
- ♦ Rail Transit: EMU, Metro, Trolly car
- ♦ Power industry: Converter, Inverter □
- ♦ Ship: Electric driven ship
- ♦ Renewable Energy: Photovoltaic, Wind energy □ ♦ Car: Electric car
- ^ Com Floatric com
- ♦ Testing Instrument: Power analyzer, High-precision power supply
- ♦ Smart Power Grid: Power generation and battery monitoring, Medium low voltage substation
- ♦ Industry Control: Industrial motor drive, UPS, Welding, Robot, Hoist, Elevator, Ski lift

Electrical Performance

Parameter	Symbol	Measuring Conditions	Min	Тур	Max	Unit
Primary nominal direct current	I _{PN_DC}	_	_	±300	_	Adc
Primary nominal RMS current*	I _{PN_AC}	_	_	212	_	Aac
Primary current, measuring	I PM	_	_	_	±360	Adc
range						
Power supply voltage DC	Uc	_	±14.2	±15	±15.8	V
Current consumption	lc	Rated primary current	±30	±130	±150	mA
Conversion ratio	K _N	Primary/secondary	1:3000	1:3000	1:3000	_
Secondary nominal RMS	Isn	Rated primary current	_	±0.1	_	Α
current						
Secondary burden resistance	R _M	_	0	10	20	Ω

^{*} refers to AC effective value

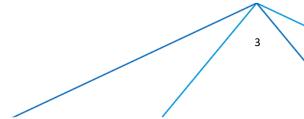
Website: www.hangzhicn.com

Tel: +86(0)755-8259 3440

Accuracy Measurement

Symb ol	Measuring Conditions	Min	Тур	Max	Unit
X _G	Input direct current, full temperature range	_	_	500	ppm
٤L	Full scale	_	_	50	ppm
T _C	_	_	_	50	ppm/K
lo	@25°C	_	_	±5	μΑ
I _{OT}	Full temperature range	_	_	±10	μΑ
t _r	di/dt of 100A/µs	_	1	_	μs
di/dt	_	100	_	-	A/µs
BW	_	0	_	100	kHz
	ol X _G ε _L Τ _C lo loτ t _r	ol X _G Input direct current, full temperature range ε _L Full scale T _C — Io @25°C Ioτ Full temperature range t _r di/dt of 100A/μs di/dt —	ol X _G Input direct current, full temperature range — ε _L Full scale — T _C — — lo @25°C — I _{OT} Full temperature range — t _r di/dt of 100A/μs — di/dt — 100	ol X _G Input direct current, full temperature range — <t< td=""><td>ol X_G Input direct current, full temperature range — — 500 ε_L Full scale — — 50 T_C — — 50 Io @25°C — — ±5 IoT Full temperature range — — ±10 tr di/dt of 100A/μs — 1 — di/dt — 100 — —</td></t<>	ol X _G Input direct current, full temperature range — — 500 ε _L Full scale — — 50 T _C — — 50 Io @25°C — — ±5 IoT Full temperature range — — ±10 tr di/dt of 100A/μs — 1 — di/dt — 100 — —

Safety Characteristics


Parameter	Symbol	Measuring Conditions	Value	Unit
Insulation voltage / Between primary and secondary	Ud	50Hz,1min	5	KV
Impulse withstand voltage / Between primary and secondary	Uw	50µs	10	KV
Creepage distance / Between primary and shield	dср	_	11	mm
Clearance distance / Between primary and shield	d _{Cl}	_	11	mm
Comparative tracking index	CTI	IEC-60112	275	V

General Characteristics

Parameter	Symbol	Measuring Condition	Min	Тур	Max	Unit
Ambient operating temperature	TA	_	-40	_	+80	°C
Storage temperature range	Ts	_	-55	_	+95	°C
Relative humidity	RH		20	_	80	%
Mass	M	<u> </u>	_	88±10		g

Tel: +86(0)755-8259 3440

Email: sales@hangzhicn.com Technical support: info@hangzhicn.com Website: www.hangzhicn.com

Operating Status Instructions

When power supply is normal and the primary current is within the specified measurement range, the secondary and primary currents are in proportional. If the primary current is over the specified measurement range, the transducers will be in overload mode, and the secondary and primary currents are not in proportional. The secondary and primary currents will return to be in proportional when the primary current recovers to the specified measurement range.

Connection system

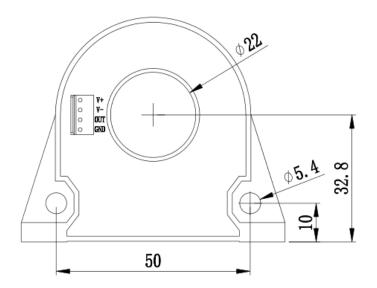
1. Pin function definition of phoenix terminal

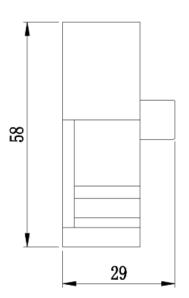
Pin No.	1 V+	2 V-	3 OUT	4 GND
Definition	+15V Supply	-15V Supply	I_Output	GND

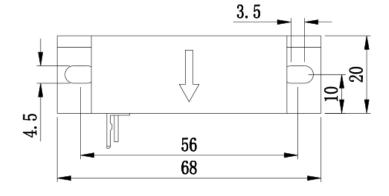
+15V Power Supply GND HIT Series Pin1 +Vcc Pin2 -Vcc Pin3 I-output R_M Pin4 GND

Test instruction:

The primary current I_P can be obtained by measuring the test current I_s flowing through R_M or the voltage U_R across R_M :


$$I_P = K_N * I_S = K_N * (U_R/R_M)$$


Tel: +86(0)755-8259 3440


Website: www.hangzhicn.com

Dimensions

Unit: mm

